
Converting Java bytecode to OpenCL

I have been asked a number of times to explain how Aparapi converts bytecode to

OpenCL. I will try to describe the basic concept here.

First we will provide a Java file format primer, then we will show how we decoded

bytecodes into instructions, then a trick to ‘self-assemble’ expression trees and finally

how we write OpenCL

A Java file-format primer

From http://en.wikipedia.org/wiki/Java_class_file or

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html we get the following high

level view of the format of a Java class file.

Where u2 refers to unsigned 16 bit values (two bytes) and u4 refers to unsigned 32

entities (four bytes).

ClassFile {
u4 magic; // CAFEBABE
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

To access the bytecodes of the methods of a class we need to read through the constant

pool (see below) the list of interfaces, the list of fields and finally we get to the list of

methods.

http://en.wikipedia.org/wiki/Java_class_file
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html

Although we really only care about the ConstantPool and the MethodInfo’s we will also

need some knowledge of how to parse attributes, so this will need some patience.

We will start with the ConstantPool

The constant pool is a list of entries of the following form

cp_info {
 u1 tag;
 u1 info[length_of_entry];
}

The first byte defines the type of the entry. Most entries are of consistent length, the one

exception being a UTF8 entry which depends on the number of characters/bytes in the

sequence of characters.

An example entry might be

CONSTANT_Integer_info {
 u1 tag; // 3
 u4 value; // bytes representing the constant value
}

For a CONSTANT_Integer_info entry the tag will always be 3 and the tag is followed by a

u4 value containing the integer value that we are representing.

For a CONSTANT_UTF8_info (a unicode sequence of characters – lets not use the word

String here or we will get confused) entry the tag is always 1 and this tag is followed by a

u2 value (the length of the following byte array) and then the bytes that make up the

UTF8 value.

CONSTANT_Utf8_info {
 u1 tag; // 1
 u2 length;
 u1 bytes[length];
}

Some constant pool entries refer to others (I have never seen a forward reference but I

don’t think it is excluded by the spec).

For example a String constant is represented by

CONSTANT_String_info {
 u1 tag; // 8
 u2 utf8_index;

}

So a String constant slot in the constant pool merely contains a reference to the constant

pool slot that contains a UTF8 value that contains the length and UTF8 chars that

comprise the String.

So why do we have String and UTF8 entries, if all the String does is delegate to the

UTF8? The reason is that not all UTF8 entries are code artifacts. For example the name

of the class itself is stored as a UTF8 entry in the constant pool, but this is not an entry

that is referenced from the code.

When a bytecode instructions needs to reference a String literal/constant it must do so

through a slot containing a CONSTANT_String_info entry. To reference directly to the

underlying UTF8 would be invalid (the verifier would trip up), so by making this

separation we can ensure that bytecode only references real String literal references.

One more example

Let’s say some bytecode is making a method call to a method

int com.amd.javalabs.MyClass.myMethod(int[] list)

The bytecode representing the call will have an immediate index into the constant pool to

indicate which method it is calling. At constantpool[method_index] we will have a

method_ref entry.

CONSTANT_Methodref_info {
 u1 tag; // 10
 u2 class_index;
 u2 name_and_type_index;
}

This slot references two other slots, referenced by class_index and

name_and_type_index. At constantpool[class_index] we will find a class_info entry

CONSTANT_Class_info {
 u1 tag;
 u2 name_index;
}

Which contains another slot reference (name_index), at constantpool[name_index] we

will find a UTF8 entry

CONSTANT_Utf8_info {
 u1 tag; // 1
 u2 length;

 u1 bytes[length];
}

Which gives us the name of the class containing the method (in our case

“com/amd/javalabs/MyClass”), we now have the class name containing the declared

method.

Going back to our Methodref_info we find that at constantpool[name_and_type_index]

we reference a name and type info entry

CONSTANT_NameAndType_info {
 u1 tag; // 11
 u2 name_index;
 u2 descriptor_index;
}

Which in turn references two other slots (another name_index and a descriptor index),

first at constantpool[name_index] we will find another UTF8 entry

CONSTANT_Utf8_info {
 u1 tag; // 1
 u2 length;
 u1 bytes[length];
}

Which gives us the name of the method, so now we know that the class

“com/amd/javalabs/MyClass” contains a method called “myMethod”.

Whereas at constantpool[descriptor_index] we will find yet another UTF8 entry

CONSTANT_Utf8_info {
 u1 tag; // 1
 u2 length;
 u1 bytes[length];
}

Which yields the signature of the method. In this case “([I)I”, which is Java crypto speak

for ‘A method which takes an array of int’s and returns an int’.

Although this multiple linking of slots to slots is tedious to decode and track, it does

allow the constant pool to be very compact. We can reuse many slots for other purposes.

For example if I added

int com.amd.javalabs.MyClass.myOtherMethod(int[] list)

To my class this would result in one new method ref (5 bytes)

CONSTANT_Methodref_info {
 u1 tag; // 10
 u2 class_index;
 u2 name_and_type_index;
}

One new name and type info (5 bytes)

CONSTANT_NameAndType_info {
 u1 tag; // 11
 u2 name_index;
 u2 descriptor_index;
}

And one new UTF8 3 + “myOtherMethod”.length = 12 = 15.

CONSTANT_Utf8_info {
 u1 tag; // 1
 u2 length;
 u1 bytes[length];
}

So we added 25 bytes to allow this new method to be added to the constant pool.

The other two new entries can reuse existing entries, We can reuse the same UTF8

containing the descriptor (because our method signature is also (I[)I) and we can reuse

the same Class_info and associated UTF8’s because the method is indeed in the same

class.

One weird thing. Double Constants and Long Constant’s each take two slots. So if at

constantpool[4] we had

CONSTANT_Long_info {
 u1 tag;
 u4 high_bytes;
 u4 low_bytes;
}

Referencing constantpool[5] would be illegal. Essentially it does not exist. I am sure

there was a great reason for this at one time ;) it does make parsing the file a little weird.

Attributes

As we continue to parse through the class you will note that there is an attribute list in the

class file. This contains a list of attribute records that apply to the class itself.

We will also find that attribute lists occur again later when we parse the FieldInfo and

MethodInfo lists, and (just to blow our minds) some Attributes themselves contain other

lists of Attributes.

For our purposes we don’t really *want* to parse the FieldInfo list, unfortunately these

FieldInfo’s are not all constant sizes, so we need to parse them, in order to step over them

on our way to the MethodInfo list.

Anyway back to Attributes.

An attribute list is a list of 0 or more attribute_info structures each looks similar to this.

attribute_info {
 u2 attribute_name_index;
 u4 attribute_length;
 u1 info[attribute_length];
}

The first u2 value in each attribute is an attribute_name_index. This is actually an index

into the ConstantPool. At constantpool[attribute_name_index] we will find UTF8Info

which names this Attribute type. We will see later that for a ‘SourceFile’ attribute

constantpool[attribute_name_index] will contain the CONSTANT_Utf8_info entry

containing the chars ‘SourceFile’.

The attribute_length defines the number of bytes following the attribute_length field.

This could of course be 0 if the attribute was just some kind of marker (whereby its

existence indicated state) in all other cases it would be >0 and the actual content would

immediately follow the attributes_length field.

For example, the name of the SourceFile (compilation unit) is a class level Attribute. It

will be in the attribute_list held at the class file level.

In this case we will have

SourceFile_attribute {
 u2 attribute_name_index;
 u4 attribute_length; // 2
 u2 sourcefile_index;
}

So at constant_pool[attribute_name_index] will be a UTF8 slot containing the string

“SourceFile”

In this case attribute_length is always 2 because the SourceFile attribute itself contains 2

more bytes.

At constant_pool[sourcefile_index] will be a UTF8 slot containing the name of the

actual Java sourcefile, for example “MyClass.java”

The Java Virtual Machine specification defines a set of attribute names that a virtual

machine must interpret and decode at various part of a classfile. It also defines some

optional ones (LocalVariableLineNumberTable for example may not exist if javac –O is

used), the spec also says that if a JVM comes across an attribute (other than those that it

must recognize) that it does not recognize, it can just step over it and continue.

So if you had a special compiler which added a new UTF8Info slot to the ConstantPool

with “MyAttribute” you would be free to add any data that you can fit in 2^16 bytes as an

attribute in any attribute list in the classfile itself that was tagged with “MyAttribute”.

We have an IDF which suggests adding native code (dlls) to classfiles using this

mechanism, and having a JVM hack that can load the native code at runtime rather than

searching the system path at runtime.

MethodInfo

So we have parsed the constant pool and we know a little bit about how to parse

attributes.

Next we need to parse the list of method_info’s

method_info {
 u2 access_flags;
 u2 name_index;
 u2 descriptor_index;
 u2 attributes_count;
 attribute_info attributes[attributes_count];
}

For each method_info we have the following.

access flags contains bit masks for the method. Here specific bits will indicate whether the method is
abstract, public, static, native etc.

At constantpool[name_index] will be a UTF8 slot defining the name of this method

At constantpool[descriptor_index] will be a UTF8 slot defining the signature. Again using the

mildly cryptic internal form where “int xxx(int [] list)” would be “([I)I”

Then we have attribute_count which tells us how many attributes we have, followed by

the attributes themselves.

One of the attributes in a non abstract non native method will be a Code attribute. That is

an attribute that looks like this

Code_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 max_stack;
 u2 max_locals;
 u4 code_length;
 u1 code[code_length];
 u2 exception_table_length;
 exception_table_entry[exception_table_length];
 u2 attributes_count;
 attribute_info attributes[attributes_count];
}

Again at constantpool[attribute_name_index] will be a UTF8 “Code” because this is a Code

attribute and of course attribute_length will tell us how many bytes are in the rest of this code

attribute.

max_stack and max_locals define verifiable contracts with the class verifier which limit how

much space is required for local variables and the maximum stack size we need for the enclosing

code (ignoring it’s calls of course).

Now we get to code_length which tells how many bytes of code we have, and code[] itself

which contains the bytecodes that represent this method.

We will ignore the exception_table stuff (except to question why the exception information

was not placed in an attribute?, i.e if a method does not contain any exception handlers why do

we need to waste 2 bytes on it… if it were an Attribute it could have existed only if needed)

You will note that Code attribute has a nested list of attributes. These guys like recursive

structures don’t they. In this nested list of attributes one will find LocalLineNumber tables

(mapping bytecode offsets to named local variables) and a bunch of Generic related stuff. You

can also see how Generics were added with minimal ClassFile modifications, this Attribute

mechanism allows new attributes to be defined whilst allowing JVM’s that do not have a clue

about Generic’s to at least correctly parse the class file.

So we have the Code array. How do we parse out the instructions.

Step 1: Converting a sequence of bytes into a list of instructions
representing the code.

The Java Virtual Machine spec defines the bytecodes for the JVM.

The Instruction Set represents a virtual stack-based machine with instructions taking one or more

bytes to encode. This is *not* a RISC style instruction set. In most cases the length of each

instruction can be decoded based upon the first byte, but some instructions (switch specifically)

requires quite a bit of work. To further complicate the decoding there is a wide modifier which

effects the next instruction (sigh), This means that we need to defer decoding to the second byte

and it’s immediate values.

So essentially the first pass is to step through the bytes and determine the length and the encoding

and add this encoding to a list. Then step over the immediate operands and pick up the next

instruction.

We repeat this process for each byte in the bytecode until we have a list of decoded instructions.

Step 2: Extraction of higher level program structures (essentially an
IR)

This proved considerably more difficult than the previous stage. We initially looked at how

Jode/Mocha did this and it seemed that we had a lot of code based upon the analysis of sequences

of instructions.

After a while we came up with a very fast way of doing this.

Because the JVM is a Stack based machine, we can use this fact to help us recreate an IR.

In the appendix of this doc we have the javap output from a piece of code. Avoid looking at the

source code that follows it ;) we will try to decode it from the bytecode.

Here are the first 25 bytes from javap.

 0: aload_0

 1: iconst_0

 2: invokevirtual #15; //Method getGlobalSize:(I)I

 5: iconst_4

 6: imul

 7: istore_1

 8: aload_0

 9: iconst_0

 10: invokevirtual #16; //Method getGlobalId:(I)I

 13: iconst_4

 14: imul

 15: istore_2

 16: fconst_0

 17: fstore_3

 18: fconst_0

 19: fstore 4

 21: fconst_0

 22: fstore 5

 24: iconst_0

 25: istore 6

We are attempting to extract higher level structure from this sequence hopefully as we decode

each instruction.

Let us assume that we have already decoded a list of instructions. Now we will visit them in

order to determine how to fold them.

 0: aload_0

This instruction pushes the object reference in slot 0 of the local variable table onto the stack. In

the case of a virtual method (which we are indeed decoding) slot 0 contains the object reference

‘this’. So we push ‘this’ onto the stack. Remember variable ‘0’ is the hidden ‘this’ passed as arg

0 of every virtual method. The args of the method will occupy slot’s [1…n], then the local

variables of the method. Annoyingly (but consistently if we recall the constant pool) doubles

and longs take two slots…

Clearly this first instruction cannot possibly consume any stack (who is pushing it?), however we

can’t cheat and must determine from the bytecode specification that aload_0 does not consume

any stack operands. It consumes 0 and pushes 1.

Next..

 1: iconst_0

The instruction iconst_o pushes the integer constant ‘0’ on the stack. It consumes 0 and pushes 1.

Next…

 2: invokevirtual #15; //Method getGlobalSize:(I)I

Here we have a virtual invoke (represents a virtual method call). From the signature ‘(I)’ you can

see that this consumes one stack argument. We just pushed this and 0 on the stack. Because

invoke virtual is *not* used for static calls (calls to static methods) a call to this method

consumes argcount + 1 operands. The 0 we just pushed is the arg and ‘this’ we pushed previously

is the instance that contains the method we are calling. So we basically are calling a method

contained in this instance and passing 0. Actually as the comment from javap tells us, we are

invoking “this.getGlobalSize(0)”.

So this invokevirtual consumes two operands, clearly the previous instructions ‘must’ have

produced the operands that this instruction is consuming (we will see later that must is too strong

an assumption, but stay with me here).

So let us use the instructions in the list we have collected so far as ‘proxies’ for the operands that

they are expecting to produce.

So if invokevirtual takes two operands and there are two instructions before it (and they both push

one operand each) then collect these instructions and indent them relative to the invokevirtual.

 2: invokevirtual 15; //Method getGlobalSize:(I)I

 0: aload_0

 1: iconst_0

We have essentially nominated the aload_0 and iconst_0 instructions as ‘children’ of the

invokevirtual.

Next…
 5: iconst_4

Here we have another integer constant push, this time we are pushing the integer value ‘4’. This

instruction does not consume any stack operands. So we’ll just add it to the list

 2: invokevirtual 15; //Method getGlobalSize:(I)I

 0: aload_0

 1: iconst_0

 5: iconst_4

Next…

 6: imul

This is a binary operator which pops two integers and pushes the product.

If you look at our list of instructions (ignoring the intents) and we treat the last two instructions as

children of our new imul we get this

 6: imul

 2: invokevirtual 15; //Method getGlobalSize:(I)I

 0: aload_0

 1: iconst_0

 5: iconst_4

As you can probably now see, we are building an expression tree.

The imul is taking the result of a call to getGlobalSize(0) and mutliuplying by 4. It is then

pushing the result onto the stack.

We will carry on.

 7: istore_1

This instruction pops an integer from the operand stack and stores it in slot 1 of the local variable

table.

So it consumes the operand pushed by the last instruction, and (ignoring indents) we are now left

with

 7: istore_1
 6: imul

 2: invokevirtual 15; //Method getGlobalSize:(I)I

 0: aload_0

 1: iconst_0

 5: iconst_4

So this is basically saying that we are assigning getGlobalSize()/4 to variable slot #1 (remember

slot 0 was ‘this’).

You can probably see that if we continue this approach we end up building a list of expression

trees who’s roots are all instructions that never ‘push’ anything onto the stack. These tend to be

stores, branches and operations that act upon variables rather than stack operands.

Indeed if we continue this algorithm with our instruction stream we end up with

 7: istore_1
 6: imul

 2: invokevirtual 15; //Method getGlobalSize:(I)I

 0: aload_0

 1: iconst_0

 5: iconst_4

 15: istore_2
 14: imul

 10: invokevirtual 15; //Method getGlobalId:(I)I

 8: aload_0

 9: iconst_0

 13: iconst_4

 17: fstore_3

 16: fconst_0

 19: fstore 4

 18: fconst_0

 22: fstore 5

 21: fconst_0

 25: istore 6

 24: iconst_0

From the above list of expression trees we basically can start to see the code structure.

In Aparapi we have a class (KernelWriter) which if passed the above data structure will the walk

the list and can recursively descend each tree from the root to create OpenCL.

We end up with something like
 [slot 1] = [slot 0].getGlobalSize(0)* 4;

 [slot 2] = [slot 0].getGlobalId(0) * 4;

 [slot 3] = 0f;

 [slot 4] = 0f;

 [slot 5] = 0f;

 [slot 6] = 0;

Of course slot[0] we know is ‘this’ so we really have

 [slot 1] = this.getGlobalSize(0)* 4;

 [slot 2] = this.getGlobalId(0) * 4;

 [slot 3] = 0f;

 [slot 4] = 0f;

 [slot 5] = 0f;

 [slot 6] = 0;

From the LocalVariableTable for each method we can resolve the actual textual names for the

slots at any particular time.

Javap provides a dump of the LocalVariableTable which we can use to do this manually

 LocalVariableTable:

 Start Length Slot Name Signature

 53 116 7 dx F

 73 96 8 dy F

 93 76 9 dz F

 121 48 10 invDist F

 141 28 11 s F

 27 148 6 i I

 0 361 0 this com.amd.javalabs.opencl.auto.NaiveNBodyKernel

 8 353 1 count I

 16 345 2 globalId I

 18 343 3 accx F

 21 340 4 accy F

 24 337 5 accz F

Sure enough if we look up slot 0 we see that the name of the variable (between pc offset 0 and

361) is indeed ‘this’ and it is of type ‘com.amd.javalabs.opencl.auto.NaiveNBodyKernel’.

Similarly slot 1is an integer (I) called count. So we can replace all uses of slot 1 with count.

Furthermore, because this is the first assignment we need to declare the variable count.

 int count = this.getGlobalSize(0)* 4;

 [slot 2] = this.getGlobalId(0) * 4;

 [slot 3] = 0f;

 [slot 4] = 0f;

 [slot 5] = 0f;

 [slot 6] = 0;

We can do this for each of the other slots and we get

 int count = this.getGlobalSize(0)* 4;

 int globalId = this.getGlobalId(0) * 4;

 float accx = 0f;

 float accy = 0f;

 float accz = 0f;

 int i = 0;

If we compare this to the real code ….

 int count = getGlobalSize(0) * 4;

 int globalId = getGlobalId(0) * 4;

 float accx = 0.f;

 float accy = 0.f;

 float accz = 0.f;

 for (int i = 0; i < count; i += 4) {

You can see we are onto something…

The last assignment i6 = 0 turns out to be the declaration of the integer variable inside the for

loop. Note that we have no indication so far that we are in a for loop. This requires a little more

analysis.

Lets decode some more, lets look at the next section of bytecode

 24: iconst_0

 25: istore 6

 27: iload 6

 29: iload_1

 30: if_icmpge 175

 33: aload_0

 34: getfield #7; //Field pos_xyzm:[F

 37: iload 6

 39: iconst_0

 40: iadd

 41: faload

 42: aload_0

 43: getfield #7; //Field pos_xyzm:[F

 46: iload_2

 47: iconst_0

 48: iadd

 49: faload

 50: fsub

 51: fstore 7

 Yada yada yada

 159: fload 5

 161: fload 11

 163: fload 9

 165: fmul

 166: fadd

 167: fstore 5

 169: iinc 6, 4

 172: goto 27

 175: fload_3

 176: ldc #2; //float 0.0050f

 178: fmul

 179: fstore_3

 180: fload 4

We will walk through the ‘instructions as operands’ transformations so we can see what this will

look like when we come to analyze it.

Here is the end of the instruction list we had last time

 25: istore 6

 24: iconst_0

The next instruction is

 27: iload 6

Which consumes no operands but pushes an operand. As does

 29: iload_1

So now we have

 25: istore 6

 24: iconst_0

 27: iload 6

 29: iload_1

Next we have
 30: if_icmpge 175

Which pops two integers and conditionally (compare greater than or equals >=) branches to 175

So again we treat the previous two instructions as if they were the operands for the conditional

branch and we get

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

Next we have

 33: aload_0

We have seen this before, it pushes the object reference in slot 0 (‘this’) on the stack. It

consumes nothing so add it to the list.

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 33: aload_0

Next
 34: getfield #7; //Field pos_xyzm:[F

This instruction pushes the value of the field (or reference if it is an object/array) onto the

operand stack, it consumes the stack top to determine the instance from which the field value is to

be extracted. So we indent the previous instruction which basically indicates that the reference is
this.pos_xym[]

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0

Next we have
 37: iload 6

 39: iconst_0

 40: iadd

This turns into

 40: iadd

 37: iload 6

 39:iconst_0

Giving us

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39:iconst_0

Next we have

 41: faload

Which basically is a float array access which assumes the stack contains an array field reference

and an integer. It pushes the accessed value. So we indent the previous two instructions (ignoring

indented instructions) under this

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39:iconst_0

The following sequence is almost identical to the previous.

 42: aload_0

 43: getfield #7; //Field pos_xyzm:[F

 46: iload_2

 47: iconst_0

 48: iadd

 49: faload

It is another array reference.

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

So now we have

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39:iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

And now we come to
 50: fsub

Which is a binary operator subtracting two operands and pushing result.

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39:iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 And finally

 51: fstore 7

Which is a store to the variable in slot 7 from the top of the stack. Giving us

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

Lets just put the yada yada yada on the list ;)

Just a few more bytes and we will take another look

The next three instructions consume nothing but push three float variable references on the

operand stack so we’ll just add them to the list
 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 YADA YADA YADA

 159: fload 5

 161: fload 11

 163: fload 9

Next we have
 165: fmul

Which pops the top two operands (and pushes the product) so we will indent the last two

instructions

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 YADA YADA YADA

 159: fload 5

 165: fmul

 161: fload 11

 163: fload 9

And now
 166: fadd

Which pops the top two operands (and pushes sum) so we will indent the last two instructions

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 YADA YADA YADA

 166: fadd

 159: fload 5

 165: fmul

 161: fload 11

 163: fload 9

Next we have
 167: fstore 5

Which pops the top operand into a variable (float at slot 5) so we will indent the last instruction

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 YADA YADA YADA

 167: fstore 5

 166: fadd

 159: fload 5

 165: fmul

 161: fload 11

 163: fload 9

Next

 169: iinc 6, 4

Which consumes nothing and pushes nothing. It add’s 4 to the integer variable in slot 6. So it

goes onto the list

Penultimiately….

 172: goto 27

Which consumes nothing and pushes nothing. It is an unconditional branch

And finally

 175: fload_3

Which we will ignore except to note that it exists at 175 (which is an earlier branch target)

Now lets look at this final sequence

 25: istore 6

 24: iconst_0

 30: if_icmpge 175

 27: iload 6

 29: iload_1

 51: fstore 7

 50: fsub

 41: faload

 34: getfield #7; //Field pos_xyzm:[F

 33: aload_0
 40: iadd

 37: iload 6

 39: iconst_0

 49: faload

 43: getfield #7; //Field pos_xyzm:[F

 42: aload_0

 48: iadd

 46: iload_2

 47: iconst_0

 YADA YADA YADA

 167: fstore 5

 166: fadd

 159: fload 5

 165: fmul

 161: fload 11

 163: fload 9

 169: iinc 6, 4

 172: goto 27

 175: fload_3

For brevity (finally you say) lets write the root of each branch and the text equivalent of what the

tree that it represents turns into

 25: istore 6 i=0
 30: if_icmpge 175 i < count

 51: fstore 7 dx=pos_xyzm[i+0]-pos_xyzm[globalId+0];

 YADA YADA YADA

 167: fstore 5 accz = accz + s * dz;

 169: iinc 6, 4 i += 4

 172: goto 27

 175: fload_3

Can you see the for loop?

 25: istore 6 i=0
 30: if_icmpge 175 i < count

 51: fstore 7 dx=pos_xyzm[i+0]-pos_xyzm[globalId+0];

 YADA YADA YADA

 167: fstore 5 accz = accz + s * dz;

 169: iinc 6, 4 i += 4

 172: goto 27

 175: fload_3

It turns out that once we collect all these expression trees, we can not only use the tree’s to

actually create expression statements (as text), but we can also use patterns of ‘roots’ to locate

higher level program structures.

For example, if we find a store followed by a conditional forward branch and the instruction

before the target of the conditional forward branch is a goto which branches to a target between

the original store and the conditional forward branch then we have a for loop.

I know it doesn’t scan well but it is a pattern that we can detect fairly simply by just traversing the

roots.

Once we have detected a pattern of roots as a construct, it also turns out that all of the ‘control

expressions’ needed by the higher level construct (in this case a for loop) are all at hand because

they themselves are all roots.

The patterns for high level constructs (if(){}, if(){}else{}) can also be generalized in

the same way.

Distinguishing between a while loop and a for loop turns out to be hard (and in some cases are

correctly interchangeable), and we need to use the LocalVariableTable to arbitrate.

Links/References

http://www.cs.toronto.edu/~yijun/literature/paper/beyls99europvm.pdf

http://code.google.com/p/jsr308-langtools/wiki/AnnotationsOnStatements

http://code.google.com/edu/parallel/mapreduce-tutorial.html

http://llvm.org/devmtg/2009-10/OpenCLWithLLVM.pdf

Appendix

public void run();

 Code:

 Stack=6, Locals=12, Args_size=1

 0: aload_0

 1: iconst_0

 2: invokevirtual #15; //Method getGlobalSize:(I)I

 5: iconst_4

 6: imul

 7: istore_1

 8: aload_0

 9: iconst_0

 10: invokevirtual #16; //Method getGlobalId:(I)I

 13: iconst_4

 14: imul

 15: istore_2

 16: fconst_0

 17: fstore_3

 18: fconst_0

 19: fstore 4

 21: fconst_0

 22: fstore 5

 24: iconst_0

 25: istore 6

 27: iload 6

 29: iload_1

 30: if_icmpge 175

 33: aload_0

 34: getfield #7; //Field pos_xyzm:[F

 37: iload 6

 39: iconst_0

 40: iadd

 41: faload

 42: aload_0

 43: getfield #7; //Field pos_xyzm:[F

 46: iload_2

 47: iconst_0

 48: iadd

 49: faload

 50: fsub

 51: fstore 7

 53: aload_0

 54: getfield #7; //Field pos_xyzm:[F

 57: iload 6

 59: iconst_1

 60: iadd

 61: faload

 62: aload_0

 63: getfield #7; //Field pos_xyzm:[F

 66: iload_2

 67: iconst_1

 68: iadd

 69: faload

 70: fsub

 71: fstore 8

 73: aload_0

 74: getfield #7; //Field pos_xyzm:[F

 77: iload 6

 79: iconst_2

 80: iadd

 81: faload

http://www.cs.toronto.edu/~yijun/literature/paper/beyls99europvm.pdf
http://code.google.com/p/jsr308-langtools/wiki/AnnotationsOnStatements
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://llvm.org/devmtg/2009-10/OpenCLWithLLVM.pdf

 82: aload_0

 83: getfield #7; //Field pos_xyzm:[F

 86: iload_2

 87: iconst_2

 88: iadd

 89: faload

 90: fsub

 91: fstore 9

 93: fconst_1

 94: aload_0

 95: fload 7

 97: fload 7

 99: fmul

 100: fload 8

 102: fload 8

 104: fmul

 105: fadd

 106: fload 9

 108: fload 9

 110: fmul

 111: fadd

 112: ldc #4; //float 50.0f

 114: fadd

 115: invokevirtual #17; //Method sqrt:(F)F

 118: fdiv

 119: fstore 10

 121: aload_0

 122: getfield #7; //Field pos_xyzm:[F

 125: iload 6

 127: iconst_3

 128: iadd

 129: faload

 130: fload 10

 132: fmul

 133: fload 10

 135: fmul

 136: fload 10

 138: fmul

 139: fstore 11

 141: fload_3

 142: fload 11

 144: fload 7

 146: fmul

 147: fadd

 148: fstore_3

 149: fload 4

 151: fload 11

 153: fload 8

 155: fmul

 156: fadd

 157: fstore 4

 159: fload 5

 161: fload 11

 163: fload 9

 165: fmul

 166: fadd

 167: fstore 5

 169: iinc 6, 4

 172: goto 27

 175: fload_3

 176: ldc #2; //float 0.0050f

 178: fmul

 179: fstore_3

 180: fload 4

 182: ldc #2; //float 0.0050f

 184: fmul

 185: fstore 4

 187: fload 5

 189: ldc #2; //float 0.0050f

 191: fmul

 192: fstore 5

 194: aload_0

 195: getfield #7; //Field pos_xyzm:[F

 198: iload_2

 199: iconst_0

 200: iadd

 201: aload_0

 202: getfield #7; //Field pos_xyzm:[F

 205: iload_2

 206: iconst_0

 207: iadd

 208: faload

 209: aload_0

 210: getfield #8; //Field vel_xyz:[F

 213: iload_2

 214: iconst_0

 215: iadd

 216: faload

 217: ldc #2; //float 0.0050f

 219: fmul

 220: fadd

 221: fload_3

 222: ldc #18; //float 0.5f

 224: fmul

 225: ldc #2; //float 0.0050f

 227: fmul

 228: fadd

 229: fastore

 230: aload_0

 231: getfield #7; //Field pos_xyzm:[F

 234: iload_2

 235: iconst_1

 236: iadd

 237: aload_0

 238: getfield #7; //Field pos_xyzm:[F

 241: iload_2

 242: iconst_1

 243: iadd

 244: faload

 245: aload_0

 246: getfield #8; //Field vel_xyz:[F

 249: iload_2

 250: iconst_1

 251: iadd

 252: faload

 253: ldc #2; //float 0.0050f

 255: fmul

 256: fadd

 257: fload 4

 259: ldc #18; //float 0.5f

 261: fmul

 262: ldc #2; //float 0.0050f

 264: fmul

 265: fadd

 266: fastore

 267: aload_0

 268: getfield #7; //Field pos_xyzm:[F

 271: iload_2

 272: iconst_2

 273: iadd

 274: aload_0

 275: getfield #7; //Field pos_xyzm:[F

 278: iload_2

 279: iconst_2

 280: iadd

 281: faload

 282: aload_0

 283: getfield #8; //Field vel_xyz:[F

 286: iload_2

 287: iconst_2

 288: iadd

 289: faload

 290: ldc #2; //float 0.0050f

 292: fmul

 293: fadd

 294: fload 5

 296: ldc #18; //float 0.5f

 298: fmul

 299: ldc #2; //float 0.0050f

 301: fmul

 302: fadd

 303: fastore

 304: aload_0

 305: getfield #8; //Field vel_xyz:[F

 308: iload_2

 309: iconst_0

 310: iadd

 311: aload_0

 312: getfield #8; //Field vel_xyz:[F

 315: iload_2

 316: iconst_0

 317: iadd

 318: faload

 319: fload_3

 320: fadd

 321: fastore

 322: aload_0

 323: getfield #8; //Field vel_xyz:[F

 326: iload_2

 327: iconst_1

 328: iadd

 329: aload_0

 330: getfield #8; //Field vel_xyz:[F

 333: iload_2

 334: iconst_1

 335: iadd

 336: faload

 337: fload 4

 339: fadd

 340: fastore

 341: aload_0

 342: getfield #8; //Field vel_xyz:[F

 345: iload_2

 346: iconst_2

 347: iadd

 348: aload_0

 349: getfield #8; //Field vel_xyz:[F

 352: iload_2

 353: iconst_2

 354: iadd

 355: faload

 356: fload 5

 358: fadd

 359: fastore

 360: return

 LineNumberTable:

 line 41: 0

 line 42: 8

 line 44: 16

 line 45: 18

 line 46: 21

 line 48: 24

 line 49: 33

 line 50: 53

 line 51: 73

 line 53: 93

 line 55: 121

 line 56: 141

 line 57: 149

 line 58: 159

 line 48: 169

 line 60: 175

 line 61: 180

 line 62: 187

 line 63: 194

 line 64: 230

 line 65: 267

 line 67: 304

 line 68: 322

 line 69: 341

 line 71: 360

 LocalVariableTable:

 Start Length Slot Name Signature

 53 116 7 dx F

 73 96 8 dy F

 93 76 9 dz F

 121 48 10 invDist F

 141 28 11 s F

 27 148 6 i I

 0 361 0 this Lcom/amd/javalabs/opencl/auto/NaiveNBodyKernel;

 8 353 1 count I

 16 345 2 globalId I

 18 343 3 accx F

 21 340 4 accy F

 24 337 5 accz F

 StackMapTable: number_of_entries = 2

 frame_type = 255 /* full_frame */

 offset_delta = 27

 locals = [class com/amd/javalabs/opencl/auto/NaiveNBodyKernel, int, int, floa

 stack = []

 frame_type = 250 /* chop */

 offset_delta = 147

public float[] getPosXYZM();

 Code:

 Stack=1, Locals=1, Args_size=1

 0: aload_0

 1: getfield #7; //Field pos_xyzm:[F

 4: areturn

 LineNumberTable:

 line 74: 0

 LocalVariableTable:

 Start Length Slot Name Signature

 0 5 0 this Lcom/amd/javalabs/opencl/auto/NaiveNBodyKernel;

@Override public void run() {

 int count = getGlobalSize(0) * 4;

 int globalId = getGlobalId(0) * 4;

 float accx = 0.f;

 float accy = 0.f;

 float accz = 0.f;

 for (int i = 0; i < count; i += 4) {

 float dx = pos_xyzm[i + 0] - pos_xyzm[globalId + 0];

 float dy = pos_xyzm[i + 1] - pos_xyzm[globalId + 1];

 float dz = pos_xyzm[i + 2] - pos_xyzm[globalId + 2];

 float invDist = 1.0f / sqrt((dx * dx) + (dy * dy) + (dz * dz) + espSqr);

 float s = pos_xyzm[i + 3] * invDist * invDist * invDist;

 accx = accx + s * dx;

 accy = accy + s * dy;

 accz = accz + s * dz;

 }

 accx = accx * delT;

 accy = accy * delT;

 accz = accz * delT;

 pos_xyzm[globalId + 0] = pos_xyzm[globalId + 0] + vel_xyz[globalId + 0] * delT +

accx * .5f * delT;

 pos_xyzm[globalId + 1] = pos_xyzm[globalId + 1] + vel_xyz[globalId + 1] * delT +

accy * .5f * delT;

 pos_xyzm[globalId + 2] = pos_xyzm[globalId + 2] + vel_xyz[globalId + 2] * delT +

accz * .5f * delT;

 vel_xyz[globalId + 0] = vel_xyz[globalId + 0] + accx;

 vel_xyz[globalId + 1] = vel_xyz[globalId + 1] + accy;

 vel_xyz[globalId + 2] = vel_xyz[globalId + 2] + accz;

 }

