
Converting Java bytecode to OpenCL 
 

I have been asked a number of times to explain how Aparapi converts bytecode to 

OpenCL.   I will try to describe the basic concept here. 

 

 

First we will provide a Java file format primer, then we will show how we decoded 

bytecodes into instructions, then a trick to ‘self-assemble’ expression trees and finally 

how we write OpenCL  

 

A Java file-format primer  

 

From http://en.wikipedia.org/wiki/Java_class_file or 

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html we get the following high 

level view of the format of a Java class file.  

 

Where u2 refers to unsigned 16 bit values (two bytes) and u4 refers to unsigned 32 

entities (four bytes). 

 

 

ClassFile {    
u4 magic; // CAFEBABE 
u2 minor_version;   
u2 major_version;  
u2 constant_pool_count;   
cp_info constant_pool[constant_pool_count-1];  
u2 access_flags;   
u2 this_class;  
u2 super_class;    
u2 interfaces_count;    
u2 interfaces[interfaces_count];   
u2 fields_count; 
field_info fields[fields_count];  
u2 methods_count;  
method_info methods[methods_count];  
u2 attributes_count;  
attribute_info attributes[attributes_count]; 

} 
 

To access the bytecodes of the methods of a class we need to read through the constant 

pool (see below) the list of interfaces, the list of fields and finally we get to the list of 

methods.  

 

http://en.wikipedia.org/wiki/Java_class_file
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html


Although we really only care about the ConstantPool and the MethodInfo’s we will also 

need some knowledge of how to parse attributes, so this will need some patience.   

 

We will start with the ConstantPool 

 

The constant pool is a list of entries of the following form 

 

cp_info { 
    u1 tag; 
    u1 info[length_of_entry];   
} 
 

The first byte defines the type of the entry. Most entries are of consistent length, the one 

exception being a UTF8 entry which depends on the number of characters/bytes in the 

sequence of characters.  

 

An example entry might be  

 

CONSTANT_Integer_info { 
   u1 tag;      // 3 
   u4 value;  // bytes representing the constant value  
} 
 

For a CONSTANT_Integer_info entry the tag will always be 3 and the tag is followed by a 

u4 value containing the integer value that we are representing. 

 

For a CONSTANT_UTF8_info (a unicode sequence of characters – lets not use the word 

String here or we will get confused) entry the tag is always 1 and this tag is followed by a 

u2 value (the length of the following byte array) and then the bytes that make up the 

UTF8 value.  

 

CONSTANT_Utf8_info { 
   u1 tag;     // 1 
   u2 length; 
   u1 bytes[length]; 
} 
 

Some constant pool entries refer to others (I have never seen a forward reference but I 

don’t think it is excluded by the spec).   

 

For example a String constant is represented by  
 

CONSTANT_String_info { 
   u1 tag;   // 8 
   u2 utf8_index; 



} 
 

So a String constant slot in the constant pool merely contains a reference to the constant 

pool slot that contains a UTF8 value that contains the length and UTF8 chars that 

comprise the String. 

 

So why do we have String and UTF8 entries, if all the String does is delegate to the 

UTF8? The reason is that not all UTF8 entries are code artifacts. For example the name 

of the class itself is stored as a UTF8 entry in the constant pool, but this is not an entry 

that is referenced from the code.  

 

When a bytecode instructions needs to reference a String literal/constant it must do so 

through a slot containing a CONSTANT_String_info entry.  To reference directly to the 

underlying UTF8 would be invalid (the verifier would trip up),  so by making this 

separation we can ensure that bytecode only references real String literal references.  

 

One more example 

 

Let’s say some bytecode is making a method call to a method  

 

int com.amd.javalabs.MyClass.myMethod(int[] list) 
 

The bytecode representing the call will have an immediate index into the constant pool to 

indicate which method it is calling. At constantpool[method_index]  we will have a 

method_ref entry. 

 

CONSTANT_Methodref_info { 
   u1 tag; // 10  
   u2 class_index; 
   u2 name_and_type_index; 
} 
 

This slot references two other slots, referenced by class_index and 

name_and_type_index. At constantpool[class_index] we will find a class_info entry 

 

CONSTANT_Class_info { 
   u1 tag; 
   u2 name_index; 
} 
 

Which contains another slot reference (name_index), at constantpool[name_index] we 

will find a UTF8 entry 

 

CONSTANT_Utf8_info { 
   u1 tag;     // 1 
   u2 length; 



   u1 bytes[length]; 
} 
 

Which gives us the name of the class containing the method (in our case 

“com/amd/javalabs/MyClass”), we now have the class name containing the declared 

method. 

 

Going back to our Methodref_info we find that at constantpool[name_and_type_index] 

we reference a name and type info entry 

 

CONSTANT_NameAndType_info { 
   u1 tag; // 11 
   u2 name_index; 
   u2 descriptor_index; 
} 
 

Which in turn references two other slots (another name_index and a descriptor index), 

first at constantpool[name_index] we will find another UTF8 entry 

 

CONSTANT_Utf8_info { 
   u1 tag;     // 1 
   u2 length; 
   u1 bytes[length]; 
} 
 

Which gives us the name of the method, so now we know that the class 

“com/amd/javalabs/MyClass” contains a method called “myMethod”. 

 

Whereas at constantpool[descriptor_index] we will find yet another UTF8 entry  
 

CONSTANT_Utf8_info { 
   u1 tag;     // 1 
   u2 length; 
   u1 bytes[length]; 
} 
 

Which yields the signature of the method.  In this case “([I)I”, which is Java crypto speak 

for ‘A method which takes an array of int’s and returns an int’. 

 

Although this multiple linking of slots to slots is tedious to decode and track, it does 

allow the constant pool to be very compact. We can reuse many slots for other purposes.  

For example if I added  
 

int com.amd.javalabs.MyClass.myOtherMethod(int[] list) 
 

To my class this would result in one new method ref (5 bytes) 



 

CONSTANT_Methodref_info { 
   u1 tag; // 10  
   u2 class_index; 
   u2 name_and_type_index; 
} 
 

One new name and type info (5 bytes) 
 

CONSTANT_NameAndType_info { 
   u1 tag; // 11 
   u2 name_index; 
   u2 descriptor_index; 
} 
 

And one new UTF8 3 + “myOtherMethod”.length = 12 = 15. 

 

CONSTANT_Utf8_info { 
   u1 tag;     // 1 
   u2 length; 
   u1 bytes[length]; 
} 
 

So we added 25 bytes to allow this new method to be added to the constant pool. 

 

The other two new entries can reuse existing entries, We can reuse the same UTF8 

containing the descriptor (because our method signature is also (I[)I ) and we can reuse 

the same Class_info and associated UTF8’s because the method is indeed in the same 

class. 

 

One weird thing.  Double Constants and Long Constant’s each take two slots.  So if at 

constantpool[4] we had  

 

CONSTANT_Long_info { 
  u1 tag; 
  u4 high_bytes; 
  u4 low_bytes; 
} 
 

Referencing constantpool[5] would be illegal.  Essentially it does not exist.   I am sure 

there was a great reason for this at one time ;) it does make parsing the file a little weird.  

 

Attributes 

 



As we continue to parse through the class you will note that there is an attribute list in the 

class file.  This contains a list of attribute records that apply to the class itself.   

 

We will also find that attribute lists occur again later when we parse the FieldInfo and 

MethodInfo lists, and (just to blow our minds) some Attributes themselves contain other 

lists of Attributes.   

 

For our purposes we don’t really *want* to parse the FieldInfo list, unfortunately these 

FieldInfo’s are not all constant sizes, so we need to parse them, in order to step over them 

on our way to the MethodInfo list.  

 

Anyway back to Attributes. 

 

An attribute list is a list of 0 or more attribute_info structures each looks similar to this. 

 

attribute_info { 
   u2 attribute_name_index; 
   u4 attribute_length; 
   u1 info[attribute_length]; 
} 
 

The first u2 value in each attribute is an attribute_name_index. This is actually an index 

into the ConstantPool. At constantpool[attribute_name_index] we will find UTF8Info 

which names this Attribute type. We will see later that for a ‘SourceFile’ attribute 

constantpool[attribute_name_index] will contain the CONSTANT_Utf8_info entry 

containing the chars ‘SourceFile’.  

 

The attribute_length defines the number of bytes following the attribute_length field.  

This could of course be 0 if the attribute was just some kind of marker (whereby its 

existence indicated state) in all other cases it would be >0 and the actual content would 

immediately follow the attributes_length field. 

 

For example, the name of the SourceFile (compilation unit) is a class level Attribute. It 

will be in the attribute_list held at the class file level. 

 

In this case we will have  
 

SourceFile_attribute { 
    u2 attribute_name_index;  
    u4 attribute_length;                 // 2 
    u2 sourcefile_index; 
} 
  

So at constant_pool[attribute_name_index] will be a UTF8 slot containing the string 

“SourceFile” 

 



In this case attribute_length is always 2 because the SourceFile attribute itself contains 2 

more bytes. 

 

At constant_pool[sourcefile_index] will be a UTF8 slot containing the name of the 

actual Java sourcefile, for example “MyClass.java” 

 

The Java Virtual Machine specification defines a set of attribute names that a virtual 

machine must interpret and decode at various part of a classfile. It also defines some 

optional ones (LocalVariableLineNumberTable for example may not exist if javac –O is 

used), the spec also says that if a JVM comes across an attribute (other than those that it 

must recognize) that it does not recognize, it can just step over it and continue. 

  

So if you had a special compiler which added a new UTF8Info slot to the ConstantPool 

with “MyAttribute” you would be free to add any data that you can fit in 2^16 bytes as an 

attribute in any attribute list in the classfile itself that was tagged with “MyAttribute”. 

 

We have an IDF which suggests adding native code (dlls) to classfiles using this 

mechanism, and having a JVM hack that can load the native code at runtime rather than 

searching the system path at runtime. 

 

MethodInfo  

 

So we have parsed the constant pool and we know a little bit about how to parse 

attributes.  

 

Next we need to parse the list of method_info’s 

 

method_info { 
  u2 access_flags; 
  u2 name_index; 
  u2 descriptor_index; 
  u2 attributes_count; 
  attribute_info attributes[attributes_count]; 
} 
 
For each method_info we have the following.  
 
access flags contains bit masks for the method.  Here specific bits will indicate whether the method is  
abstract, public, static, native etc. 
 

At constantpool[name_index] will be a UTF8 slot defining the name of this method  

 

At constantpool[descriptor_index] will be a UTF8 slot defining the signature.  Again using the 

mildly cryptic internal form where “int xxx(int [] list)”  would be “([I)I”  

 

Then we have attribute_count which tells us how many attributes we have, followed by 

the attributes themselves.  



 

One of the attributes in a non abstract non native method will be a Code attribute.  That is 

an attribute that looks like this 

 

Code_attribute { 
   u2 attribute_name_index; 
   u4 attribute_length; 
   u2 max_stack; 
   u2 max_locals; 
   u4 code_length; 
   u1 code[code_length]; 
   u2 exception_table_length; 
   exception_table_entry[exception_table_length]; 
   u2 attributes_count; 
   attribute_info attributes[attributes_count]; 
} 
 

Again at constantpool[attribute_name_index] will be a UTF8 “Code” because this is a Code 

attribute and of course attribute_length will tell us how many bytes are in the rest of this code 

attribute.   

 

max_stack and max_locals define verifiable contracts with the class verifier which limit how 

much space is required for local variables and the maximum stack size we need for the enclosing 

code (ignoring it’s calls of course). 

 

Now we get to code_length which tells how many bytes of code we have, and code[] itself 

which contains the bytecodes that represent this method. 

 

We will ignore the exception_table stuff (except to question why the exception information 

was not placed in an attribute?, i.e if a method does not contain any exception handlers why do 

we need to waste 2 bytes on it… if it were an Attribute it could have existed only if needed)  

 

You will note that Code attribute has a nested list of attributes.  These guys like recursive 

structures don’t they. In this nested list of attributes one will find LocalLineNumber tables 

(mapping bytecode offsets to named local variables) and a bunch of Generic related stuff.  You 

can also see how Generics were added with minimal ClassFile modifications, this Attribute 

mechanism allows new attributes to be defined whilst allowing  JVM’s that do not have a clue 

about Generic’s to at least  correctly parse the class file.  

 

So we have the Code array.  How do we parse out the instructions. 

 

Step 1:  Converting a sequence of bytes into a list of instructions 
representing the code. 

 

The Java Virtual Machine spec defines the bytecodes for the JVM. 

 



The Instruction Set represents a virtual stack-based machine with instructions taking one or more 

bytes to encode.  This is *not* a RISC style instruction set.  In most cases the length of each 

instruction can be decoded based upon the first byte, but some instructions (switch specifically) 

requires quite a bit of work. To further complicate the decoding there is a wide modifier which 

effects the next instruction (sigh), This means that we need to defer decoding to the second byte 

and it’s immediate values. 

 

So essentially the first pass is to step through the bytes and determine the length and the encoding 

and add this encoding to a list.  Then step over the immediate operands and pick up the next 

instruction.   

 

We repeat this process for each byte in the bytecode until we have a list of decoded instructions. 

 

Step 2: Extraction of higher level program structures (essentially an 
IR) 

 

This proved considerably more difficult than the previous stage.  We initially looked at how 

Jode/Mocha did this and it seemed that we had a lot of code based upon the analysis of sequences 

of instructions. 

 

After a while we came up with a very fast way of doing this. 

 

Because the JVM is a Stack based machine, we can use this fact to help us recreate an IR. 

 

In the appendix of this doc we have the javap output from a piece of code.  Avoid looking at the 

source code that follows it ;) we will try to decode it from the bytecode.  

 

Here are the first 25 bytes from javap. 

 
    0: aload_0 

    1: iconst_0 

    2: invokevirtual #15; //Method getGlobalSize:(I)I 

    5: iconst_4 

    6: imul 

    7: istore_1 

    8: aload_0 

    9: iconst_0 

   10: invokevirtual #16; //Method getGlobalId:(I)I 

   13: iconst_4 

   14: imul 

   15: istore_2 

   16: fconst_0 

   17: fstore_3 

   18: fconst_0 

   19: fstore 4 

   21: fconst_0 

   22: fstore 5 

   24: iconst_0 

   25: istore 6 



 

We are attempting to extract higher level structure from this sequence hopefully as we decode 

each instruction. 

  

Let us assume that we have already decoded a list of instructions.  Now we will visit them in 

order to determine how to fold them. 

 
    0: aload_0 

 

This instruction pushes the object reference in slot 0 of the local variable table onto the stack. In 

the case of a virtual method (which we are indeed decoding) slot 0 contains the object reference 

‘this’.  So we push ‘this’ onto the stack.  Remember variable ‘0’ is the hidden ‘this’ passed as arg 

0 of every virtual method. The args of the method will occupy slot’s [1…n], then the local 

variables of the method.  Annoyingly (but consistently  if we recall the constant pool ) doubles 

and longs take two slots…    

 

Clearly this first instruction cannot possibly consume any stack (who is pushing it? ), however we 

can’t cheat and must determine from the bytecode specification that aload_0 does not consume 

any stack operands.  It consumes 0 and pushes 1. 

 

Next..  

 
    1: iconst_0 

 

The instruction iconst_o  pushes the integer constant ‘0’ on the stack. It consumes 0 and pushes 1. 

 

Next… 

 
    2: invokevirtual #15; //Method getGlobalSize:(I)I 

 

Here we have a virtual invoke (represents a virtual method call).  From the signature ‘(I)’ you can 

see that this consumes one stack argument.  We just pushed this and 0 on the stack. Because 

invoke virtual is *not* used for static calls (calls to static methods) a call to this method 

consumes argcount + 1 operands. The 0 we just pushed is the arg and ‘this’ we pushed previously 

is the instance that contains the method we are calling. So we basically are calling a method 

contained in this instance and passing 0.  Actually as the comment from javap tells us, we are 

invoking “this.getGlobalSize(0)”.  

 

So this invokevirtual consumes two operands, clearly the previous instructions ‘must’ have 

produced the operands that this instruction is consuming (we will see later that must is too strong 

an assumption, but stay with me here).  

 

So let us use the instructions in the list we have collected so far as ‘proxies’ for the operands that 

they are expecting to produce. 

 

So if invokevirtual takes two operands and there are two instructions before it (and they both push 

one operand each) then collect these instructions and indent them relative to the invokevirtual.  

 

 
    2: invokevirtual 15; //Method getGlobalSize:(I)I 

        0: aload_0 



        1: iconst_0 

 

We have essentially nominated the aload_0 and iconst_0 instructions as ‘children’ of the 

invokevirtual.  

 

Next… 
    5: iconst_4 

 

Here we have another integer constant push, this time we are pushing the integer value ‘4’. This 

instruction does not consume any stack operands.  So we’ll just add it to the list  

 
    2: invokevirtual 15; //Method getGlobalSize:(I)I 

        0: aload_0 

        1: iconst_0 

    5: iconst_4 

 

Next… 

 
    6: imul 

 

This is a binary operator which pops two integers and pushes the product. 

 

If you look at our list of instructions (ignoring the intents) and we treat the last two instructions as 

children of our new imul we get this  

 
    6: imul 

        2: invokevirtual 15; //Method getGlobalSize:(I)I 

            0: aload_0 

            1: iconst_0 

        5: iconst_4 

 

As you can probably now see, we are building an expression tree. 

 

The imul is taking the result of a call to getGlobalSize(0) and mutliuplying by 4.  It is then 

pushing the result onto the stack.  

 

We will carry on.  
 

    7: istore_1 

 

This instruction pops an integer from the operand stack and stores it in slot 1 of the local variable 

table.  

 

So it consumes the operand pushed by the last instruction, and (ignoring indents) we are now left 

with  

  
       7: istore_1 
        6: imul 

           2: invokevirtual 15; //Method getGlobalSize:(I)I 

               0: aload_0 

               1: iconst_0 



           5: iconst_4 

 

 

So this is basically saying that we are assigning getGlobalSize()/4 to variable slot #1 (remember 

slot 0 was ‘this’).  

 

You can probably see that if we continue this approach we end up building a list of expression 

trees who’s roots are all instructions that never ‘push’ anything onto the stack. These tend to be 

stores, branches and operations that act upon variables rather than stack operands.  

 

Indeed if we continue this algorithm with our instruction stream we end up with  

 
        7: istore_1 
        6: imul 

           2: invokevirtual 15; //Method getGlobalSize:(I)I 

              0: aload_0 

              1: iconst_0 

           5: iconst_4 

 

        15: istore_2 
         14: imul 

             10: invokevirtual 15; //Method getGlobalId:(I)I 

                 8: aload_0 

                 9: iconst_0 

             13: iconst_4 

 

    17: fstore_3 

        16: fconst_0 

 

    19: fstore 4 

        18: fconst_0 

 

    22: fstore 5 

        21: fconst_0 

 

    25: istore 6 

      24: iconst_0 

 

 

 

From the above list of expression trees we basically can start to see the code structure.  

 

In Aparapi we have a class (KernelWriter) which if passed the above data structure will the walk 

the list and can recursively descend each tree from the root to create OpenCL. 

 

We end up with something like 
     [slot 1] = [slot 0].getGlobalSize(0)* 4; 

     [slot 2] = [slot 0].getGlobalId(0) * 4; 

     [slot 3] = 0f; 

     [slot 4] = 0f; 

     [slot 5] = 0f; 



     [slot 6] = 0; 

 

Of course slot[0] we know is ‘this’ so we really have  

 

     [slot 1] = this.getGlobalSize(0)* 4; 

     [slot 2] = this.getGlobalId(0) * 4; 

     [slot 3] = 0f; 

     [slot 4] = 0f; 

     [slot 5] = 0f; 

     [slot 6] = 0; 

 

From the LocalVariableTable for each method we can resolve the actual textual names for the 

slots at any particular time. 

 

Javap provides a dump of the LocalVariableTable which we can use to do this manually 

 
  LocalVariableTable: 

   Start  Length  Slot  Name   Signature 

    53     116      7    dx       F 

    73      96      8    dy       F 

    93      76      9    dz       F 

   121      48     10    invDist  F 

   141      28     11    s        F 

    27     148      6    i        I 

     0     361      0    this     com.amd.javalabs.opencl.auto.NaiveNBodyKernel 

     8     353      1    count    I 

    16     345      2    globalId I 

    18     343      3    accx     F 

    21     340      4    accy     F 

    24     337      5    accz     F 

 

 

Sure enough if we look up slot 0 we see that the name of the variable (between pc offset 0 and 

361) is indeed ‘this’ and it is of type ‘com.amd.javalabs.opencl.auto.NaiveNBodyKernel’. 

Similarly  slot 1is an integer (I) called count.   So we can replace all uses of slot 1 with count. 

Furthermore, because this is the first assignment we need to declare the variable count. 

 
     int count = this.getGlobalSize(0)* 4; 

     [slot 2] = this.getGlobalId(0) * 4; 

     [slot 3] = 0f; 

     [slot 4] = 0f; 

     [slot 5] = 0f; 

     [slot 6] = 0; 

 

We can do this for each of the other slots and we get  

 
     int count = this.getGlobalSize(0)* 4; 

     int globalId = this.getGlobalId(0) * 4; 

     float accx = 0f; 

     float accy = 0f; 

     float accz = 0f; 

     int i = 0; 

 

If we compare this to the real code …. 

 



     int count = getGlobalSize(0) * 4; 

     int globalId = getGlobalId(0) * 4; 

 

     float accx = 0.f; 

     float accy = 0.f; 

     float accz = 0.f; 

 

     for (int i = 0; i < count; i += 4) { 

 

 

You can see we are onto something…  

 

The last assignment i6 = 0 turns out to be the declaration of the integer variable inside the for 

loop.  Note that we have no indication so far that we are in a for loop.  This requires a little more 

analysis.  

 

Lets decode some more, lets look at the next section of bytecode 

 
   24:  iconst_0 

   25:  istore  6 

   27:  iload   6 

   29:  iload_1 

   30:  if_icmpge       175 

   33:  aload_0 

   34:  getfield        #7; //Field pos_xyzm:[F 

   37:  iload   6 

   39:  iconst_0 

   40:  iadd 

   41:  faload 

   42:  aload_0 

   43:  getfield        #7; //Field pos_xyzm:[F 

   46:  iload_2 

   47:  iconst_0 

   48:  iadd 

   49:  faload 

   50:  fsub 

   51:  fstore  7 

 

   Yada yada yada 

 

    

   159: fload   5 

   161: fload   11 

   163: fload   9 

   165: fmul 

   166: fadd 

   167: fstore  5 

   169: iinc    6, 4 

   172: goto    27 

   175: fload_3 

   176: ldc     #2; //float 0.0050f 

   178: fmul 

   179: fstore_3 

   180: fload   4 

 



 

We will walk through the ‘instructions as operands’ transformations so we can see what this will 

look like when we come to analyze it.  

 

Here is the end of the instruction list we had last time  

 
    25: istore 6 

      24: iconst_0 

 

The next instruction is 

 
   27: iload 6 

 

Which consumes no operands but pushes an operand. As does  

  
   29: iload_1 

 

So now we have  

 
   25: istore 6 

      24: iconst_0 

 

    27:  iload   6 

    29:  iload_1 

 

Next we have  
   30:  if_icmpge       175 

 

Which pops two integers and conditionally (compare greater than or equals >= ) branches to 175 

 

So again we treat the previous two instructions as if they were the operands for the conditional 

branch and we get  

 
    25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

 

 

Next we have  

 
   33:  aload_0 

 

 

We have seen this before, it pushes the object reference in slot 0 (‘this’) on the stack.  It 

consumes nothing so add it to the list. 

 
   25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 



        33:  aload_0 

 

Next  
   34:  getfield        #7; //Field pos_xyzm:[F 

 

This instruction pushes the value of the field (or reference if it is an object/array) onto the 

operand stack, it consumes the stack top to determine the instance from which the field value is to 

be extracted.  So we indent the previous instruction which basically indicates that the reference is 
this.pos_xym[] 

  
    25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    34:  getfield        #7; //Field pos_xyzm:[F 

                33:  aload_0 

 

Next we have  
   37:  iload   6 

   39:  iconst_0 

   40:  iadd 

 

 

This turns into 

  
     40: iadd 

       37: iload   6 

       39:iconst_0 

 

Giving us  

 
    25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    34:  getfield        #7; //Field pos_xyzm:[F 

                33:  aload_0 
    40: iadd 

       37: iload   6 

       39:iconst_0 

 

 

Next we have  

 
   41:  faload 

 

Which basically is a float array access which assumes the stack contains an array field reference 

and an integer.  It pushes the accessed value. So we indent the previous two instructions (ignoring 

indented instructions) under this  

 
     25: istore 6 



       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    41: faload 

        34: getfield        #7; //Field pos_xyzm:[F 

                         33:  aload_0 
        40: iadd 

            37: iload   6 

            39:iconst_0 

 

The following sequence is almost identical to the previous.  

 
   42:  aload_0 

   43:  getfield        #7; //Field pos_xyzm:[F 

   46:  iload_2 

   47:  iconst_0 

   48:  iadd 

   49:  faload 

 

It is another array reference. 

 
   49: faload 

       43: getfield        #7; //Field pos_xyzm:[F 

           42: aload_0 

       48: iadd 

           46: iload_2 

           47: iconst_0 

 

So now we have  

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    41: faload 

        34: getfield        #7; //Field pos_xyzm:[F 

                         33:  aload_0 
        40: iadd 

            37: iload   6 

            39:iconst_0 

    49: faload 

       43: getfield        #7; //Field pos_xyzm:[F 

           42: aload_0 

       48: iadd 

           46: iload_2 

           47: iconst_0 

 

And now we come to  
   50:  fsub 

 

Which is a binary operator subtracting two operands and pushing result.  

 
     25: istore 6 



       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    50:  fsub 

        41: faload 

            34: getfield        #7; //Field pos_xyzm:[F 

                                  33:  aload_0 
            40: iadd 

                37: iload   6 

                39:iconst_0 

        49: faload 

            43: getfield        #7; //Field pos_xyzm:[F 

                42: aload_0 

            48: iadd 

                46: iload_2 

                47: iconst_0 

 

 

 And finally  
 

   51:  fstore  7 

 

Which is a store to the variable in slot 7 from the top of the stack. Giving us 

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

 

Lets just put the yada yada yada on the list ;)  

 

Just a few more bytes and we will take another look 

 

The next three instructions consume nothing but push three float variable references on the 

operand stack so we’ll just add them to the list  
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 



        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

         YADA YADA YADA 

    159: fload   5 

    161: fload   11 

    163: fload   9 

 

Next we have  
     165: fmul 

 

 

Which pops the top two operands (and pushes the product) so we will indent the last two 

instructions 

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

         YADA YADA YADA 

    159: fload   5 

    165: fmul 

         161: fload   11 

         163: fload   9 

 

And now  
    166: fadd 

 



Which pops the top two operands (and pushes sum) so we will indent the last two instructions 

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

         YADA YADA YADA 

    166: fadd 

         159: fload   5 

         165: fmul 

              161: fload   11 

              163: fload   9 

 

Next we have  
   167: fstore  5 

 

 

Which pops the top operand into a variable (float at slot 5) so we will indent the last instruction 

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

         YADA YADA YADA 

    167: fstore  5 



         166: fadd 

              159: fload   5 

              165: fmul 

                   161: fload   11 

                   163: fload   9 

 

Next  

 
   169: iinc    6, 4 

 

Which consumes nothing and pushes nothing.  It add’s 4 to the integer variable in slot 6. So it 

goes onto the list 

 

Penultimiately….   
 

   172: goto    27 

 

Which consumes nothing and pushes nothing.  It is an unconditional branch   

 

And finally 
 

   175: fload_3 

 

Which we will ignore except to note that it exists at 175 (which is an earlier branch target)  

 

Now lets look at this final sequence  

 
     25: istore 6 

       24: iconst_0 

    30: if_icmpge 175 

        27:  iload   6 

        29:  iload_1 

    51:  fstore  7 

        50:  fsub 

            41: faload 

                34: getfield        #7; //Field pos_xyzm:[F 

                                          33:  aload_0 
                40: iadd 

                    37: iload   6 

                    39: iconst_0 

            49: faload 

                43: getfield        #7; //Field pos_xyzm:[F 

                    42: aload_0 

                48: iadd 

                    46: iload_2 

                    47: iconst_0 

         YADA YADA YADA 

    167: fstore  5 

         166: fadd 

              159: fload   5 

              165: fmul 

                   161: fload   11 

                   163: fload   9 

    169: iinc    6, 4 

 



    172: goto    27 

 

    175: fload_3 

 

For brevity (finally you say) lets write the root of each branch and the text equivalent of what the 

tree that it represents turns into 

 
     25: istore 6       i=0 
    30:  if_icmpge 175   i < count        

    51:  fstore 7        dx=pos_xyzm[i+0]-pos_xyzm[globalId+0]; 

 

         YADA YADA YADA 

    167: fstore 5        accz = accz + s * dz; 

    169: iinc 6, 4       i += 4 

    172: goto 27 

    175: fload_3 

 

Can you see the for loop? 

 
     25: istore 6       i=0 
    30:  if_icmpge 175   i < count        

    51:  fstore 7        dx=pos_xyzm[i+0]-pos_xyzm[globalId+0]; 

 

         YADA YADA YADA 

    167: fstore 5        accz = accz + s * dz; 

    169: iinc 6, 4       i += 4 

    172: goto 27 

    175: fload_3 

 

It turns out that once we collect all these expression trees, we can not only use the tree’s to 

actually create expression statements (as text), but we can also use patterns of  ‘roots’ to locate 

higher level program structures.  

 

For example, if we find a store followed by a conditional forward branch and the instruction 

before the target of the conditional forward branch is a goto which branches to a target between 

the original store and the conditional forward branch then we have a for loop.  

 

I know it doesn’t scan well but it is a pattern that we can detect fairly simply by just traversing the 

roots.    

 

Once we have detected a pattern of roots as a construct, it also turns out that all of the ‘control 

expressions’ needed by the higher level construct (in this case a for loop) are all at hand because 

they themselves are all roots.  

 

The patterns for high level constructs (if(){}, if(){}else{}) can also be generalized in 

the same way.  

 

Distinguishing between a while loop and a for loop turns out to be hard (and in some cases are 

correctly interchangeable), and we need to use the LocalVariableTable to arbitrate.  

 

 

 

Links/References 



http://www.cs.toronto.edu/~yijun/literature/paper/beyls99europvm.pdf 

http://code.google.com/p/jsr308-langtools/wiki/AnnotationsOnStatements 

http://code.google.com/edu/parallel/mapreduce-tutorial.html 

http://llvm.org/devmtg/2009-10/OpenCLWithLLVM.pdf 

 

Appendix 

 

 
public void run(); 

  Code: 

   Stack=6, Locals=12, Args_size=1 

   0:   aload_0 

   1:   iconst_0 

   2:   invokevirtual   #15; //Method getGlobalSize:(I)I 

   5:   iconst_4 

   6:   imul 

   7:   istore_1 

   8:   aload_0 

   9:   iconst_0 

   10:  invokevirtual   #16; //Method getGlobalId:(I)I 

   13:  iconst_4 

   14:  imul 

   15:  istore_2 

   16:  fconst_0 

   17:  fstore_3 

   18:  fconst_0 

   19:  fstore  4 

   21:  fconst_0 

   22:  fstore  5 

   24:  iconst_0 

   25:  istore  6 

   27:  iload   6 

   29:  iload_1 

   30:  if_icmpge       175 

   33:  aload_0 

   34:  getfield        #7; //Field pos_xyzm:[F 

   37:  iload   6 

   39:  iconst_0 

   40:  iadd 

   41:  faload 

   42:  aload_0 

   43:  getfield        #7; //Field pos_xyzm:[F 

   46:  iload_2 

   47:  iconst_0 

   48:  iadd 

   49:  faload 

   50:  fsub 

   51:  fstore  7 

   53:  aload_0 

   54:  getfield        #7; //Field pos_xyzm:[F 

   57:  iload   6 

   59:  iconst_1 

   60:  iadd 

   61:  faload 

   62:  aload_0 

   63:  getfield        #7; //Field pos_xyzm:[F 

   66:  iload_2 

   67:  iconst_1 

   68:  iadd 

   69:  faload 

   70:  fsub 

   71:  fstore  8 

   73:  aload_0 

   74:  getfield        #7; //Field pos_xyzm:[F 

   77:  iload   6 

   79:  iconst_2 

   80:  iadd 

   81:  faload 

http://www.cs.toronto.edu/~yijun/literature/paper/beyls99europvm.pdf
http://code.google.com/p/jsr308-langtools/wiki/AnnotationsOnStatements
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://llvm.org/devmtg/2009-10/OpenCLWithLLVM.pdf


   82:  aload_0 

   83:  getfield        #7; //Field pos_xyzm:[F 

   86:  iload_2 

   87:  iconst_2 

   88:  iadd 

   89:  faload 

   90:  fsub 

   91:  fstore  9 

   93:  fconst_1 

   94:  aload_0 

   95:  fload   7 

   97:  fload   7 

   99:  fmul 

   100: fload   8 

   102: fload   8 

   104: fmul 

   105: fadd 

   106: fload   9 

   108: fload   9 

   110: fmul 

   111: fadd 

   112: ldc     #4; //float 50.0f 

   114: fadd 

   115: invokevirtual   #17; //Method sqrt:(F)F 

   118: fdiv 

   119: fstore  10 

   121: aload_0 

   122: getfield        #7; //Field pos_xyzm:[F 

   125: iload   6 

   127: iconst_3 

   128: iadd 

   129: faload 

   130: fload   10 

   132: fmul 

   133: fload   10 

   135: fmul 

   136: fload   10 

   138: fmul 

   139: fstore  11 

   141: fload_3 

   142: fload   11 

   144: fload   7 

   146: fmul 

   147: fadd 

   148: fstore_3 

   149: fload   4 

   151: fload   11 

   153: fload   8 

   155: fmul 

   156: fadd 

   157: fstore  4 

   159: fload   5 

   161: fload   11 

   163: fload   9 

   165: fmul 

   166: fadd 

   167: fstore  5 

   169: iinc    6, 4 

   172: goto    27 

   175: fload_3 

   176: ldc     #2; //float 0.0050f 

   178: fmul 

   179: fstore_3 

   180: fload   4 

   182: ldc     #2; //float 0.0050f 

   184: fmul 

   185: fstore  4 

   187: fload   5 

   189: ldc     #2; //float 0.0050f 

   191: fmul 

   192: fstore  5 



   194: aload_0 

   195: getfield        #7; //Field pos_xyzm:[F 

   198: iload_2 

   199: iconst_0 

   200: iadd 

   201: aload_0 

   202: getfield        #7; //Field pos_xyzm:[F 

   205: iload_2 

   206: iconst_0 

   207: iadd 

   208: faload 

   209: aload_0 

   210: getfield        #8; //Field vel_xyz:[F 

   213: iload_2 

   214: iconst_0 

   215: iadd 

   216: faload 

   217: ldc     #2; //float 0.0050f 

   219: fmul 

   220: fadd 

   221: fload_3 

   222: ldc     #18; //float 0.5f 

   224: fmul 

   225: ldc     #2; //float 0.0050f 

   227: fmul 

   228: fadd 

   229: fastore 

   230: aload_0 

   231: getfield        #7; //Field pos_xyzm:[F 

   234: iload_2 

   235: iconst_1 

   236: iadd 

   237: aload_0 

   238: getfield        #7; //Field pos_xyzm:[F 

   241: iload_2 

   242: iconst_1 

   243: iadd 

   244: faload 

   245: aload_0 

   246: getfield        #8; //Field vel_xyz:[F 

   249: iload_2 

   250: iconst_1 

   251: iadd 

   252: faload 

   253: ldc     #2; //float 0.0050f 

   255: fmul 

   256: fadd 

   257: fload   4 

   259: ldc     #18; //float 0.5f 

   261: fmul 

   262: ldc     #2; //float 0.0050f 

   264: fmul 

   265: fadd 

   266: fastore 

   267: aload_0 

   268: getfield        #7; //Field pos_xyzm:[F 

   271: iload_2 

   272: iconst_2 

   273: iadd 

   274: aload_0 

   275: getfield        #7; //Field pos_xyzm:[F 

   278: iload_2 

   279: iconst_2 

   280: iadd 

   281: faload 

   282: aload_0 

   283: getfield        #8; //Field vel_xyz:[F 

   286: iload_2 

   287: iconst_2 

   288: iadd 

   289: faload 



   290: ldc     #2; //float 0.0050f 

   292: fmul 

   293: fadd 

   294: fload   5 

   296: ldc     #18; //float 0.5f 

   298: fmul 

   299: ldc     #2; //float 0.0050f 

   301: fmul 

   302: fadd 

   303: fastore 

   304: aload_0 

   305: getfield        #8; //Field vel_xyz:[F 

   308: iload_2 

   309: iconst_0 

   310: iadd 

   311: aload_0 

   312: getfield        #8; //Field vel_xyz:[F 

   315: iload_2 

   316: iconst_0 

   317: iadd 

   318: faload 

   319: fload_3 

   320: fadd 

   321: fastore 

   322: aload_0 

   323: getfield        #8; //Field vel_xyz:[F 

   326: iload_2 

   327: iconst_1 

   328: iadd 

   329: aload_0 

   330: getfield        #8; //Field vel_xyz:[F 

   333: iload_2 

   334: iconst_1 

   335: iadd 

   336: faload 

   337: fload   4 

   339: fadd 

   340: fastore 

   341: aload_0 

   342: getfield        #8; //Field vel_xyz:[F 

   345: iload_2 

   346: iconst_2 

   347: iadd 

   348: aload_0 

   349: getfield        #8; //Field vel_xyz:[F 

   352: iload_2 

   353: iconst_2 

   354: iadd 

   355: faload 

   356: fload   5 

   358: fadd 

   359: fastore 

   360: return 

  LineNumberTable: 

   line 41: 0 

   line 42: 8 

   line 44: 16 

   line 45: 18 

   line 46: 21 

   line 48: 24 

   line 49: 33 

   line 50: 53 

   line 51: 73 

   line 53: 93 

   line 55: 121 

   line 56: 141 

   line 57: 149 

   line 58: 159 

   line 48: 169 

   line 60: 175 

   line 61: 180 



   line 62: 187 

   line 63: 194 

   line 64: 230 

   line 65: 267 

   line 67: 304 

   line 68: 322 

   line 69: 341 

   line 71: 360 

 

  LocalVariableTable: 

   Start  Length  Slot  Name   Signature 

   53      116      7    dx       F 

   73      96      8    dy       F 

   93      76      9    dz       F 

   121      48      10    invDist       F 

   141      28      11    s       F 

   27      148      6    i       I 

   0      361      0    this       Lcom/amd/javalabs/opencl/auto/NaiveNBodyKernel; 

   8      353      1    count       I 

   16      345      2    globalId       I 

   18      343      3    accx       F 

   21      340      4    accy       F 

   24      337      5    accz       F 

 

  StackMapTable: number_of_entries = 2 

   frame_type = 255 /* full_frame */ 

     offset_delta = 27 

     locals = [ class com/amd/javalabs/opencl/auto/NaiveNBodyKernel, int, int, floa 

     stack = [] 

   frame_type = 250 /* chop */ 

     offset_delta = 147 

 

 

public float[] getPosXYZM(); 

  Code: 

   Stack=1, Locals=1, Args_size=1 

   0:   aload_0 

   1:   getfield        #7; //Field pos_xyzm:[F 

   4:   areturn 

  LineNumberTable: 

   line 74: 0 

 

  LocalVariableTable: 

   Start  Length  Slot  Name   Signature 

   0      5      0    this       Lcom/amd/javalabs/opencl/auto/NaiveNBodyKernel; 

 

 

@Override public void run() { 

      int count = getGlobalSize(0) * 4; 

      int globalId = getGlobalId(0) * 4; 

 

      float accx = 0.f; 

      float accy = 0.f; 

      float accz = 0.f; 

 

      for (int i = 0; i < count; i += 4) { 

         float dx = pos_xyzm[i + 0] - pos_xyzm[globalId + 0]; 

         float dy = pos_xyzm[i + 1] - pos_xyzm[globalId + 1]; 

         float dz = pos_xyzm[i + 2] - pos_xyzm[globalId + 2]; 

 

         float invDist = 1.0f / sqrt((dx * dx) + (dy * dy) + (dz * dz) + espSqr); 

 

         float s = pos_xyzm[i + 3] * invDist * invDist * invDist; 

         accx = accx + s * dx; 

         accy = accy + s * dy; 

         accz = accz + s * dz; 

      } 

      accx = accx * delT; 

      accy = accy * delT; 

      accz = accz * delT; 



      pos_xyzm[globalId + 0] = pos_xyzm[globalId + 0] + vel_xyz[globalId + 0] * delT + 

accx * .5f * delT; 

      pos_xyzm[globalId + 1] = pos_xyzm[globalId + 1] + vel_xyz[globalId + 1] * delT + 

accy * .5f * delT; 

      pos_xyzm[globalId + 2] = pos_xyzm[globalId + 2] + vel_xyz[globalId + 2] * delT + 

accz * .5f * delT; 

 

      vel_xyz[globalId + 0] = vel_xyz[globalId + 0] + accx; 

      vel_xyz[globalId + 1] = vel_xyz[globalId + 1] + accy; 

      vel_xyz[globalId + 2] = vel_xyz[globalId + 2] + accz; 

 

   } 


